Answer all the questions. Each question is worth 5 points. You may state correctly and use any result proved in the class. However if an answer is an almost immediate consequence of the stated result, such a result also need to be proved.

All topological spaces are assumed to be Hausdorff.

- 1) Let X be a complex normed linear space. Let $f:X\to C$ be a non-zero linear map . Show that either f(B(0,1)) is a bounded set or all of C. In the second case show that ker(f) is dense in X.
 - 2) Show that for any normed linear space X, X^* is a Banach space.
- 3) Let $M = \{ f \in C([0,1]) : f([0,\frac{1}{2}]) = 0 \}$. Let $\Phi : C([0,1])|M \to C([0,\frac{1}{2}])$ be defined by $\phi([f]) = f|[0,\frac{1}{2}]$. Show that Φ is a well-defined, liner, onto, isometry.
- 4) Let X be a normed linear space and M a closed subspace. Let $\pi: X \to X|M$ be the quotient map. Show that $||\pi|| = 1$.
- 5) Let H be a complex separable Hilbert space. Show that for some discrete set Δ , there is a linear, continuous, onto map from $H \to \ell^2(\Delta)$.
- 6) Let H be a complex Hilbert space. Let $P: H \to H$ be a linear map such that P(P(x)) = P(x) and $||P(x)||^2 + ||x P(x)||^2 = ||x||^2$ for all x. Show that ||P|| = 1 = ||I P||, where I denotes the identity map.
- 7) Let (Ω, \mathcal{A}, P) be a probability space. Let $\{f_n\}_{n\geq 1} \subset L^3(P)$ be a sequence such that $f_n \to f$ for some $f \in L^3(P)$. Show that for any $g \in L^{\frac{3}{2}}(P)$, $\int f_n g \ dP \to \int f g \ dP$.
- 8) Let (X, \mathcal{T}) be a locally compact non-compact space. Give complete details to show that $C_0(X)$ is a Banach space with the supremum norm.